The Planet Earth:

Movements & Composition of the Atmosphere

Movements of the Earth

1) The rotation of the earth about its own axis: day and night

Movements of the Earth Cont.

2) The revolution of the earth around the Sun

Earth-Moon Interaction

New Moon
First Quarter
Full Moon
Last Quarter
New Moon

Waxing Crescent
Waxing Gibbous
Waning Gibbous
Waning Gibbous
Waning Crescent
Waning Crescent</td

The gravitation pull on the fluid portion of the earth's surface results in what we observe as ocean tides

Weather Service

Earth-Moon Interaction Cont.

- At full and new moon, the gravitational force of the sun and moon are combined causing a higher high tide (and lower low tide). Maximum tides = spring tide
- At first & last quarter, the sun's gravitational pull is perpendicular to the moon's, resulting in lower than average tides. Moderate tides = selfabor

Doc. Ref.: RTC-PRE-054.5_Planet Earth Last Revision : July 2019

South African Weather Service

Tidal Effects

Our Atmosphere

Vertical Structure

- Four regions
 - Troposphere,
 - Stratosphere,
 - Mesosphere
 - Thermosphere
 - Ionosphere and Exosphere
- Higher temperatures occur near the earth's <u>surface</u>, in the vicinity of the <u>stratopause</u> and <u>thermosphere</u>.
- Temperature lapse rate an average value of 6.5 °C/km.

Troposphere

- The **troposphere** contains the greater part of the mass of the atmosphere
 - marked by vertical motions
 - high water-vapour content
 - cloud and weather. As a result, it is of great concern to meteorologists.
- Generally, the temperature dereases with height. However, layer(s) in which the temperature increases with height occur: temperature inversion layer.
- Its upper boundary is the **Tropopause**. Its altitude varies over the earth

Composition of Dry Air

- Atmosphere is composed of a mechanical mixture (not compound) of gases and impurities
- The distribution of these components varies over time
- Major Gases: Nitrogen and Oxygen (about 99%)

Permanent Gases			Variable Gases			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)*
Nitrogen	N ₂	78.08	Water vapor	H,O	0 to 4	
Oxygen	0 ₂	20.95	Carbon dioxide	CO ₂	0.037	368*
Argon	Ar	0.93	Methane	CH4	0.00017	1.7
Neon	Ne	0.0018	Nitrous oxide	N ₂ O	0.00003	0.3
Helium	He	0.0005	Ozone	0 ₃	0.000004	0.04†
Hydrogen	H ₂	0.00006	Particles (dust, soot, etc.)	2	0.000001	0.01-0.15
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002

 Green-House Gases (GHG) in high concentrations affect temperatures we experience on the surface

South African Weather Service

Stratosphere

- Extends from the Tropopause up to 50 km.
- Temperature characteristics are:
 - It generally remains constant up to about 20 km: referred to as the isothermal layer
 - then it increases (at different rates) above that.
 - In the upper parts, the temperatures are similar to those near the Earth's surface owing to the effects of Ozone
- Stratospheric ozone absorbs much of the lethal ultraviolet radiation (UV) from the Sun, making the Earth's surface safely habitable for human life

Ozone

 Most ozone forms in the upper stratosphere as a result of a process that involves the absorption of UV radiation.

- High atmospheric ozone concentrations occur at levels from 10 up to 25km
- Ozone concentrations vary with: altitude, Seasons

The End....

Time for further clarity if needed

